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Signal transmission enhanced by noise has been recently investigated in detail on the single compartment,
also referred to as single point, leaky integrate-and-fire model neuron under a subthreshold stimulation. In this
paper we study how this phenomenon is influenced by taking into account the spatial characteristics of the
neuron. A stochastic two-point leaky integrate-and-fire model, comprising a dendritic compartment and trigger
zone, under periodic stimulation is studied. A method of how to measure synchronization between the signal
and the output in both, experiments and models, is proposed. This method is based on a distance between the
exact periodic spiking, as expected for sufficiently strong and noiseless stimulation, and neuronal activity
evoked by a subthreshold signal corrupted by noise. It is shown that qualitatively the same phenomenon,
phase-locking enhanced by the noise, as found in the spatially unstructured neuron is produced by the spatially
complex neuron. However, quantitatively there are significant differences. Namely, the two-point model neu-
ron is more robust against the noise and therefore its amplitude has to be higher to enhance the signal. Further,
it is found that the range of the critical levels of noise is larger for the two-point model than for the single-point
one. Finally, the enhancing effect at the optimal noise is more efficient in the single-point model and thus the
firing patterns at their optimal noise levels are different in both models.

PACS numbds): 87.10+¢€, 07.05.Mh

I. INTRODUCTION new information from such, at least minimal, compartmen-
talization of a neuron.

The single-point models, in which all the properties of a A typical neuron has a rather complex anatomical struc-
neuron are collapsed into a single point in space, appeafire. However, at the basic simplification, it can be divided
besides the cable models, to be the most common formdnto two distinct parts. It is the dendritic part where the input
description of the neuronal activifil]. The most frequently to the neuron takes place and the trigger zone where the
applied, studied, modified, and generalized among thesgéSPonse to the input is generated as the output signal. Of
models are, as a compromise between tractability and reafourse, in the single-point models these two parts are col-
ism, those which are based on the leaky integrate-and-firl@PSe€d into one, despite that their functioning is different.
(LIF) concept; for a recent review sd€]. The above- Therefore, several attempts have appeared in the last decade
mentioned preference of the single-point representation g

also obvious in the studies on the stochastic resonanceli N
henomena in neuronal modéRefs.[3—14] and many oth- ohn [19] proposed a two-compartment model and similar
P ) models were further developed and studi@d—-25. It has

erls)._A ?reat zdvan:]age o_f tf|1e smgllfl-_pomtdabstractlon is |tsEeen shown in[22,23 that the activity of the two-
relatively good mathematical tractability and transparency ot mnartment model is less sensitive to abrupt stimulation

the achieved results. Another type of approach to the nelsnanges because these are smoothened out in the transmis-
ronal modeling is based on considering model neurons comjon, from the dendritic compartment to the trigger zone. The
posed of many compartmenter example, Baldet al.[15]  gelayed response of the two-point model is a consequence of
studied a cerebellar Purkyne cell model containing a total ofne fact that the input takes place at a compartment different
4550 compartments These models are investigated mainly from that at which the output is generated. Further, the
by using software packages specifically developed for thisnodel predicts serial correlation of intervals between neu-
purpose[16—18. The questions posed in these two ap-ronal firings, interspike intervaldSls), which is a phenom-
proaches usually do not overlap. The former one is morenon often observed in experimental data but not reproduc-
oriented on the studies of neuronal functioning in an envidble in stochastic single-point models under time-constant
ronment(networks, input-output propertiee/hereas the lat- input. Finally, as shown ih22], the two-point model neuron
ter approach aims at revealing the properties of the neurois characterized by a lower sensitivity to the input intensity
itself. The inspiring question for this paper is whether theand a larger coding range than the single-point model. All
studies on the input-output characteristics could gain somehese results were derived for time-constant signals and were
based on the assumption that the mean discharge rate is used
as the neuronal code. The assumptionplicitly contained
*Email address: rodrig@cpt.univ-mrs.fr in most of the studies on input-output characterigtisgjuite
TEmail address: lansky@sun1.biomed.cas.cz realistic because the rate code is one of the basic modes of

at generalize the single-point models, making them bio-
gically more relevant but still mathematically tractable.
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signaling in the nervous system, for example for the stimuand C is its capacitange w, A;, and o;>0 are constants
lation intensity[ 26]; as the stimulus intensity is increased, ancharacterizing the input and its variabilitt, is the moment
increase in the neuronal activity is expected to follow almosiof the last firing of an action potential, and is the fre-
immediately. quency of the driving force modulationT&E 27/ w is the
Periodic forces in real neurons come either from the exmodulation periogl The firing of an action potential is iden-
ternal world in sensory systems or are caused by periodicallsified with the first crossing oX through a firing threshol&,
fluctuating conditions within the neuronal network or, fi- S>x,. At these moments, the membrane potential is repeat-
nally, appear within the neuron itself. The sources of peri-edly reset to its initial value,, and for simplicity it is as-
odic stimulation in a model neuron, at least for the LIFsumed to be equal to zera,=0. Due to the exogenous
model, were studied if27]. There, the periodic signal, character of the signal, the periodic force continues and does
which is influenced by the activity of the neuron under con-not depend ort,. The phase-locking effect, in which the
sideration to such an extent that it resets the phase of pefireuronal firing synchronizes with the periodical stimulation,
odic forcing at each neuronal discharge, is called the endogias been both theoreticallin Eq. (2.1) using the determin-
enous one. The periodic signal which evolves independentlistic signal characterized by, =0] and experimentallyac-
of the activity of the studied neuron is called exogenoustivating a neuron by periodically changing intensity of stimu-
There is no doubt about the existence of periodically changtus) investigated for quite a long timée.g., [28—31 and
ing internal conditions in a neuron, but these are not so easyany others Again, mainly the models based on the LIF
to manipulate experimentally and probably have a smalleeoncept were used for this purpose, but in the deterministic
effect than externally imposed periodic forces. Due to thisyersions.
limited biological relevance of the endogenous periodicity, For studying the mode(2.1), three parametric regions
and due to the fact that the paper is oriented towards studynay be defined(1) the permanent suprathreshold in which
ing the transfer of the external signal by a neuron, here wehe constant part of stimulation is sufficient to reach the
restrict ourselves to the exogenous periodic input only. Athreshold(2) the permanent subthreshold in which, whatever
detailed comparison of the effect of noise in dependency ois the frequencyw, no sustained firing exists and only a
exogenous versus endogenous periodical input in the singlgransient activity may appear at the onset of stimulation, and
point LIF model was presented recently by Shimokawal.  (3) mixed, in which the periodic component determines if the
[12]. threshold is or is not reachable. For the mearXah the

The aim of this study is to investigate the effects of peri-absence of threshold and under the conditign0, holds
odic stimulation on the simplest spatially structured neuronal

model (two poinY in comparison with those evoked by the A,
same kind of stimulation applied on the classical nonspatial EX(t)=7 u(1—e Y")+ —
(single-poinj LIF model. At first, the subthreshold properties 1+(w7)

of the models are summarized. These are necessary for being
able to define comparable input signals for both models.
Then, a method for measuring the effect of noise on the
regularity of firing is proposed. This measure permits us to
define an optimal level of the noise enhancing the signalThe subtheshold stimulation occurs when {EBEX(t))[t
Further, on the basis of this measure, we conclude that the 0}<S, which implies

same effects are present in both models, however, with a

substantial quantitative difference@) the optimal noise is ( Aq
larger in the two-point modelji) the enhancing effect of the T\ pt ———

optimal noise is weaker in the two-point model than in the

single-point one and thus the firing patterns at their optimal ) o

noises differ, andiii) the range of the noise close to the 1N€ Stimulation is of permanent subthreshold typer(i
optimum is larger in the two-point model than in the single- T A1) <S, of permanent suprathreshold typeji.> S, and
point one. the mixed cases cover the remaining part of {heA;}
space. In these mixed cases, the value of stimulation fre-
quency o decides whether the stimulation is actually su-

cog wt)
X

+ w sin(ot)— e“”) ] . (22

<s. (2.3

Il. THE MODELS prathreshold or subthreshold.
A. Single-point model
In the stochastic LIF model, under a periodic stimulation, B. Two-point model

the behavior of the membrane depolarizatis described The stochastic proces§ defined in Eq(2.1), represents

by the stochastic differential equation the membrane depolarization at an abstract point of a neuron,
X which is generally identified with the trigger zone. However,

dX=| — —+u+A; cof wt) |dt+o,dW, the input, which takes place mainly at the dendritic part of

T

the neuron, is also represented here. This concentration of all
properties into the single point is the source of uncertainty of
X(tg) =Xq, t=tg (2.2))  the single-point models. Thus, the descriptionXig, in the
two-point model, replaced by a coudl¥,, X,} representing
whereW s a standard Wiener process; 0 is the membrane depolarization in the two distinct parts. The model we ana-
time constant £=RC, whereR is the membrane resistance lyze here is based on the following set of hypotheses.
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(i) The neuron is assumed to be made of twoand
interconnected—dendritic and trigger zone—compartments.

(i) The stochastic input is present at the dendritic com- mz(t)=I1+I2exp< L +I3ex;{— 2.5,
partment only. T T T
(iii) The potentials of the two compartments are described )
by leaky integrators with a reset mechanism at the trigger +lscodwt) +Hlgsin(wt), 29
zone.
In the two-point neuronal model, exposed to the saméNhere
type of input as Eq(2.1), the depolarizatiorX, of the den- v
dritic compartment is defined in the following way: 1= . +27andk1= vr—Iq, (2.10
r
Xty 1
dX,(t)=| — . + :[Xz(t)—Xl(t)]-i— v+A2cos{wt))dt v+ A+ v(1w)?] K (2.1
' =_ =
2 2[1+ (7w)?] 2 .
+o,dW (2.9
and the depolarizatioX, at the trigger zone is 3= Tl (7 +27)%(v+ Ag) — (7T 0)°] _—
2[(r+27) 2%+ (r7,0)2](7,+27) ’
Xa(t) 1 (2.12
dXp(t) =1 — + ;[Xl(t)_xz(t)] dt, (2.5
| A, T T, )
where 7, is a junctional time constant; the other parameters 4= > P K
have the same interpretation as in E2.1). It is assumed in 2\ 1+(r0)?  (r427)%4 (r770)
equations(2.4) and (2.5) that the membrane time constants
are the same at both compartments; r,= 7, but this as- k,= aci ~1, 2.13
sumption can be easily removed. In accordance with the 1+ (7w)? ’
integrate-to-threshold scenario, in the moment when the de-
polarizationX, at the trigger zone reaches the firing thresh-and
old S the value of the process, is reset to zero while the 5 )
processX; continues in its evolution. If the occurrence time :Azw T _ (r7)
of this event is taken as the time origin, then the ISI is the 2 {1+ (r0)? (r+20%+(rrw)?]’
first-passage time across the bound&rjor X, under the
initial conditions X4(tg) =X;9 and X5(tg) =0, wherexy is A1
the value of the dendritic potential at the moment of the last Ks=————1Is. (2.19
spike. For the deterministic inputog=0), the above de- 1+ (7o)

scribed model was studied in detail by Bresskdf0)]. When comparing the means of the two- and single-point
First, to be able to define the subthreshold stimulation parng . gie-p
. . . ) . models, Egs.(2.8) and (2.9 with Eq. (2.2, we have
regime in this model, we investigate the means,(t)

— E(X,(1)) andm,(t) = E(X,(1)), in the absence of a thresh- E(X(t))=m4(t) +my(t). The rest of the properties is a direct

old. A general formula for the moments of a stochastic pro-conseauence of this one. The same periodicity is retained in
A g . o . . IO oth compartments and also the same decay of the amplitude
cess given by linear stochastic differential equations can bge

applied to Eqs(2.4) and (2.5) (.g.,[32]). We have With increasing frequency of stimulation. For largee have
my(t)=ky+ VK5 + k& cog wt— ¢;) (2.19

amt) _ (1 ) 0+ Sm )+ v+ A t
dat  \7 ; my(t) ;rmz() v+ Aycoq wt) and
(2.6
. my(t) =11+ \I5+15 cod wt— ¢,), (2.16
an
where tg¢,=ks/k, and tg¢,=15/1,. By taking different
dmy(t) }+ 1 (1) + im (t) (.7  nitial conditions, onlyg, and ¢, change. Thus, the division
dt T o7 2 P ' of the input parametric space analogous to that based on Eq.

(2.3), which holds for the single-point model, follows from
For defining subthreshold or suprathreshold parametric remax my(t)|t>0]<S, namely,
gions, we are interested only in the behavior of the moments

for large t and thus we will use the initial conditions [+ \I5+12<S, (2.17)
m;(0)=m,(0)=0. The solutions of the above equations are
given by which defines the permanent subthreshold stimulation.

The equations similar to those for the first moments can
be written for the second-order moments. Solving them, the
variances of the membrane potential at both compartments
and the covariance between them can be computed28¢e
+k,coq wt) + kssin( wt) (2.8  The relation between the variances is

1 2
ml(t): k1+ kzeXF< - ;t) + k3eXF{ - T
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Trgg eters of the two-point .m.odel. A.II.these parameters have to be
207+ 1) gsnmated fro.m the spiking activity and _the task is of substan-
d tial complexity even for the Ornstein-Uhlenbeck model
705 s [35,36. Therefore, their' specifications in modeling studies
m g 2mmitl(rtm) have usual_ly a speculative Charact_er.
' As mentioned above, and investigated 22] for the con-
(2.18 stant inputs, in order to compare the single- and two-point
models, their parameters have to be adjusted. To make the
and as pointed out in the cited paper, the second-order m@ame steady-state levels of depolarization, for the constant
ments do not depend on the deterministic part of the signabackgroung inputs we have to fulfill the condition
but only on the noise, and thus they are the same as if
=p=A;=A,=0. As we are more interested in the behavior v 27t (2.20
of the trigger zone compartment for its possible comparison w T '
with the single-point model than in the dendritic compart-
ment, let us also present the asymptotic form of the autocoirom which, and for the given set of intrinsic parameters
variance functionR,(s,t) of X,, for larget ands. Lett  andr,, if the inputu to the single-point model is given, the
—o and s—, then the autocovariance function dependsconstant inputv to the two-point model can be calculated.

Var(X,(t))=Var(X,(t))—

—| Var(X;(0))+

only on the difference of these two times and toe|t—s|, Similarly, relating the amplitudes given by Ed2.16 and
we have (2.2,
2 —ul/rt 2 2 —(27+7)ul(77) A
(o TzTre 7T, € 17T R
=—= - —= /Iyt I, 2.2
R =g | o n @ ) Tran? V4 (220
(2.19

the value ofA, can be evaluate(t is contained il , andls).

We are not going to adjust the amplitudes of noise as the
other input parameters because we will investigate them in

Two kinds of parameters appear or are connected to Egheir full ranges; however, a preliminary hint about their re-
(2.1); the intrinsic parameteiSandr, which are independent |ationship can be deduced from the behavior of the autoco-
of the input, and the parametess A, o, andoy, reflecting  variance functions. For example, minimizing the difference
the input[23,33. We may regard. as a backgrountsteady-  of areas under the autocovariance function for the single-
statg level of the signalA; as its time-variable component point model, R(u)=o3re"¥7/2, and that given by Eq.
controlled byw and oy as the amplitude of the noise. An (2,19, we obtain that the ratio between the amplitudes of
additional parameter, appearing in Eqs2.4) and(2.5 can  noise o, and o; follows condition (2.20. Another adjust-

be classified as the intrinsic parameter, the remaining paramnent comes out from comparing the asymptotic variances,
eters have the same interpretation as in the single-poing(0)=R,(0), which implies

C. Adjustment of the parameters

model.

An example of system highly sensitive to periodic stimuli 2(r+ 2+
are the olfactory neuroni84]. The critical region for these 72 _ \/ (r Tr)(z T Tr)_ (2.22
fluctuations is between 1 and 10 Hz, up to 40 Hz in some 71 T

other systems. Therefore, the range for realigiidn the

models is well specified. Also the intrinsic parameters of theS0, We have several preliminary estimates, E@s20-
neurons are re|ative|y well known, the f||'|ng threshdd (222), of the ratio between the amplitudes of the noise in the
ranges from 5 to 15 mV and the time constaritom 5 to 20  two-point model and the single-point one for achieving their
ms. Note that the time constant is sufficiently shorter than théimilar behavior.

period of stimulation and thus even within one stimulation

cycle the depolarization gets close to its steady-state [#vel Ill. THE RESULTS

the firing threshold does not preventdnd thus for suprath-
reshold stimulation the phase locking in which there is only
one spike per several stimulation period is rarely observed. A Before going into the comparison of the effect of the
slightly different situation concerns, because the identifi- noise in the two- and single-point models, we have to find a
cation of this parameter may require us to take into accounsuitable method for this purpose. The method should be in-
in addition to electrical properties, the distance between theependent of the model, preferably easy to establish in ex-
compartments. To be specifie, has been chosen of the periments and the obtained results should be easy to inter-
same order of magnitude as The attempts to specify the pret. First of all, we need to realize what result is expected
values of the remaining input parameters are more compliand on this basis to propose a measure of the deviation
cated. Even in the case of direct external stimulation, theaused by the noise. For the suprathreshold stimulation, the
input parameters do not reflect the physical levels of stimulijdeal result is achieved if the noise is completely eliminated.
but rather their transformation into the internal representatiofhen, the neuron fires only as the signal determines. On the
(for a more detailed discussion sg&3]). There is no possi- other hand, for the subthreshold conditions, there is no out-
bility of directly measuring the values @f, A;, ando; and  put in the absence of noise. Then, the ideal result is achieved
an analogous statement holds for the corresponding pararif-the parametersin the single-point modelk andA;) can

A. A measure of the input-output synchronization
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25 T T T T T T T T T

be modified in such a way that the signal is at least mini-
mally suprathresholdincreasing the signpland again by
eliminating the noise. As we are interested in the role of the
periodic component we keep, for comparison, its amplitude 20
A, constant and change the background sign&b reach the
suprathreshold level. Then, we can return to our noisy S|gna>
and measure the distance between the ideal output signal ar~
that influenced or enhanced by the noise. The simplest S|tuﬁ
ation arises for the 1:1 phase-locking regime which is con-s
sidered here; however, the measure we are going to proposg
can be also generalized for other cases. So, in 1:1 phase
locking (for suprathreshold stimulation in the absence of
noise ISI=T, which is the period of stimulation, and a pos-

—

5

—_

0 H

sible measure of the noise-induced cooperative effezite- rigger zone
induced distortion in supratheshold regimean be taken as 0 . . . . . . . . .
B 0 50 100 150 200 250 300 350 400 450 500
Am:f [x—T|™f (x)dXx, (3.1 time (ms)
0 30 T T T T T T T T T
trigger zone

wherem>0 is a parameter anflis the ISI probability den-
sity. The minimum ofA ,, equal to zero is achieved for regu-
lar firing at periodT, f(x)=&(x—T). Form=2, the relation
(3.1) defines the mean-squared distance, however, other val
ues ofm can also be considered. It is obvious that is less
sensitive, especially for larg®, to double firings within one
stimulation period than to missing one or even worse severa
periods of stimulation in a row without any spike. If the
mean ISl isT and m=2, thenA, gives a variance of ISI,
otherwise

.1)

20

15

10 | b

depolarization / variance ( mvV

dendrite

A,=Var(ISl)+[meariISI)—T]?,

(3.2

which has a very intuitive interpretatiofthe distance is

given by the variability of I1SIs and the squared distance be-

tween mean IS| and).

To calculate the values &, by using Eq.(3.1) requires
us to know the ISI density function, or at least for £§.2)
the first two moments of it. Shimokaved al.[11] developed

50 100 150 200 250 300 350 400 450 500

time (ms)

FIG. 1. Behavior of the two-point model with parameters
=2.1 mV/ms,A,=0.5 mV/ms, T=100 ms,o,=1 mV/{yms, ,
=16 ms,7=10 ms in the absence of the firing thresh@@dbthresh-
old stimulation. (a) The mean depolarizations and single sample

a sophisticated method for the evaluation of the first-trajectories for both compartments. The upper curves are for the

passage-time density in the single-point mo¢zl) under

dendritic compartment, the lower for the trigger zofi®.The ratio

the exogenous stimulation; however, no such method ha@f the single trajectory of the membrane depolarization to its vari-

been available for the two-point model equatid@s4) and

ance. The upper curve shows the ratio for the trigger zone region

(2.5), and thus, for the sake of equal conditions, we employVhile the lower one corresponds to the dendrite.

a numerical simulation for both models. To estimatg,
from simulated(experimentally observgdSIs we calculate

(3.3

it
™

n
2, ba=TIm,

where ISIs are denoted by, (i=1,...,n). The Euler
schema with time step 0.005 ms was applied in Egsl),

B. Without firing threshold

The behavior of the two-point model even without impos-
ing a firing threshold reflects well some of its properties. The
mean dendritic and trigger zone depolarizations given by
Egs.(2.6) and(2.7) and single trajectories of these depolar-
izations are illustrated in Fig.(4). We can see that the noise
is substantially filtered out by the transition from the dendrite
to the trigger zone. At the trigger zone, the trajectory follows

(2.4), or (2.5 to calculate the times needed to cross thethe mean more closely, while at the dendritic compartment,
threshold(half of this step was used to check the reliability the noise dominates. The low variability of depolarization at
of the procedure We are aware that simulation of the first- the trigger zone, with respect to the dendritic compartment,
passage-time density for stochastic diffusion processes mdgllows from formula(2.18), which shows that, rather rap-
be unreliable, at least for some paramet@ese crossings idly, with a time constant £+ 7,)/(277,), the steady-state
caused by low noigeit overestimates the exact first-passagevalue of the variance oK,(t) is reached and that it is
time[37,38. Therefore, the procedure was checked using themaller than the variance of;(t). The decrease of the vari-
shorter step and very low noise cases were excluded. ability level at the trigger zone implies that the relative de-
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polarization is higher at the trigger zone than at the dendritéween » and n (betweenA, and A;) is 3.6 (3.795. As it

and it is illustrated in Fig. (b), where the ratio between a follows from comparing the autocovariance functions of both

single trajectory of the depolarization and a variance of thenodels, the value 3.6 would be also the expected ratio be-

depolarization is plotted. We can see that while the triggefween the amplitudes of the critical noise. By using the ratio

zone depolarization is below the dendritic depolarizafg®e  of asymptotic variance2.22), the predicted value is 4.33.

1F_|r? I1(a)], Whe'nbr'(le':ate?trtlo '{h_e variar;g;_, itlt()e)‘jomﬁs rt“%herOn the other hand, it follows from the numerical experiment
is lower variability at the trigger zori&ig. 1(a)], reflecte ; opt opt -

also by higher rela);ive depo?srizaticiﬁigg 1(b)], suggests that the ratio between," and o3 " reaches 10 fom=2,

. . . ! ; 8.12 form=1, and 5.79 fom=1/2. The optimal levels of
robustness of the signal against the noise distortion and/%e noise for the two-point model seem to be slightly larger
enhancement present in the two-point model.

than those suggested by fitting the characteristics like auto-

covariance or the variances. The reason follows from a lower

depth of the profile of the functioA,, in the two-point cases.

It shows that the two-point model cannot reach the quality of
1. Suprathreshold stimulation the input reproduction whatever is the amplitude of the

The simulation of system&.4) and (2.5 with an im- noise. It means that the ISls are more scattered ardund

posed firing threshold is illustrated in Fig. 2. In the noiseles¢"® Wo-point model and in such a case multifiring is pre-
situation @,=0), the effect of the reset on the behavior of férred over the missed periods. _

the dendritic compartment is negligible and visible only at  The burstingshort ISI3 is caused by a higher level of the
the upper phase of stimulation perifféig. 2(a)]. The phase Noise and explains the higher raig”/o¢" than that pre-
locking of the firing with the stimulation is apparent in both dicted by the autocovariance functions. The different effect
situations[Fig. 2(a) without noise and Figs. (B) and 2c) of the noise is well apparent from the ISI histograjfys.
with noisg. In Fig. 2b) and Zc), again the dendritic depo- 3(b), 3(e), and 3h)] and[Figs. 3c), 3(f), and 3i)] which also
larization seems to be strongly influenced by the noise anillustrate the role of parameten on measure\,,. By using

the periodic component is rather hidden in it. On the Othellargerm (in our casem=2), the measure is very sensitive to
hand, the spiking activity looks practically uninfluenced by the long silent periodong ISIs and to avoid them in mini-
the noise a_nd preserves the pattern of Fig) Psee also the mizing A,, these are eliminated. This, on the other hand,
::odrres]?tohndmg hlitogrtangs, Fllgts_(.d)zl a?]q é{?)]a-rhte aThpl". q Imost completely destroys the phase-locking effigay.

ude of thé noise has 1o be reiatively high to destroy the 1de (c)] and the bursts of more than one spike are typical in this
phase-locking effect. Nevertheless, the role of noise can bg uation. There is another source of bursting, inherent in the
considered as negative here because it jitters the constat%{ : 9

i
_ , wo-point model, the positive serial correlation of ISls,
ISls. In Fig. 2f) the dependency a, on the amplitudes of \ nich produces bursting even for constant inp2g]. Of

the NOISE 1S '””S”i‘teo‘- W? can see that even here the me ourse, what value ai is the most appropriate one cannot
sure has its meaning starting at zero for the noiseless condj-

tion and growing as the jitters of the ISIs increase with the, e answered, but the visual inspection favors g, Srhich

noise. The stronger effect of noise in the single-point modeEaS the ratio of amplitudes of noises close to those predicted
is apparent y formulas(2.20 and(2.22. As mentioned in Sec. llIC2

the values ofA ,, can be in reality lower than those estimated

2. Subthreshold stimulation by A,, because of the overestimation of the first-passage

_ N ) ) time; nevertheless, the shape of the curves would not be
In Fig. 3 the dependency df,, on the amplitude of noise  jitferent.

is presented for different values of (higherm stresses the Bulsara[39] and Shimokawg11] measured the input-
importance of misseq fir[ngsfor the single- and two-point output enhancement by the height of the ISI dengist T.
models. We can see in Figs(aB 3(d), and 3g) that for both gy ;sing the histograms presented in Fig. 3, we can judge
models there exist optimal noise levetSP' determined by e effect ofm on this measure. However, we have to be
the minimum value ofA,,. This optimum is always sharper aware that the amplitudes of noise used in construction of
for the single-point model and it reaches a lower distancehese histograms are optimal with respect to meadubeit
from the constant ISI. This is very much apparent in the ISinot with respect to the measure nigT)}. We have for
histograms constructed for the critical noise in both modelsm=2: 91p(100)=265 and g,,(100)=87, for m=1:
For the single-point modélFigs. 3b), 3(e), and 3h)] the g, (100)=345 andg,,(100)=229, for m=1/2: g;,(100)
histograms are better centered around the period of stimula=273 andg,,(100)= 318, where the index gt distinguishes
tion, however, any small change of the noise amplitade the one- or two-point model. We can see that for the single-
would QUICk|y destroy this Synchronization. Defining the val- point model the maximum is reachedmt 1; however, the
ues of o as an optimal range of the noise for which the peaks of the histograms are rather similar as were the levels
distanceA , is not “substantially” different from its minimal  of noise deduced for different. On the contrary, for the
value, we can see that the optimal rangerefis larger than  two-point model, the maximum is reachednat 1/2 and the
that of o4 independently ofn. optimal noise determined by mgy(T)} may be substan-
Equations2.20 and(2.21) relate the input parameters of tially different from that determined by. It follows from
the single- and two-point models in such a way that the meanomparing the histograms that the firing patterns for the op-
depolarizations are the same in both of them. For the parantimal noise are different in both models and also for the
eters selected in Fig. Gee the figure legendthe ratio be- two-point model in dependency on.

C. With firing threshold
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FIG. 2. Simulation of the two-point neuronal model under a suprathreshold stimulation. The vXiét)l&as been subjected to a reset
to 0 at each time the threshoflis reached $=6.80 mV, the rest of the parameters as in Fig. The values ofX,(t) are marginally
influenced by the reseta) In the absence of noiserg=0 mV/./ms), the neuron fires at constant intervals equal to the period of stimulation,
T=100 ms.(b) and(c) In the presence of noiger,=0.5 mV/\yms and 1 mV4/ms), the ISIs vary around the period of stimulation, which
illustrates the robustness of the trigger zone respésside generationto the noise. When noise is actirigith diffusion coefficiento,
=1 mV/y/ms, which may be considered as a rather high noise)letied dendrite response to the action of periodic input shows a high
variability. On the contrary, at the trigger zone region, the structure of the spiking activity is not fundamentally cHdhgetl (e)
Histograms of ISIs for different levels of noise in suprathreshold stimulatior=0.5 mV/\/ms; o»=1 mV/{ms). (f) Dependency of\,
on the amplitude of noise in suprathreshold stimulation for the single-point and two-point models. The parameters for the single-point model
are u=0.583 mV/msA;=0.134 mV/ms as follows from Eq$2.16) and(2.17). Note the faster growth of the distance for the single-point

model.
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FIG. 3. Dependency oim on the amplitude of noise in single- and two-point models for subthreshold stimulation and histograms of I1SIs
for the optimum levels of noise. The parameters of the two-point modeb&2.0 mV/ms,A,=0.5 mV/ms,T=100 ms,7,=16 ms,
=10 ms,S=6.80 mV, and the corresponding parameters of the single-point modgl=ae556 mV/msA;=0.134 mV/ms;(a) m=2, for
which the optimal noise i¢) o= 0.2 mV/\ms, andc) o»=2 mV/yms. In(d) m= 1, for which the optimal noise i®) o;=0.17 mV/A/ms,
and (f) o,=1.38 mV/\/ms. In(g) m=1/2, for which the optimal noise i&) o;=0.19 mV/A/ms and(i) o,=1.10 mV//ms.

IV. DISCUSSION AND CONCLUSIONS the properties are qualitatively retained but the quantitative

This study was intended to show the effect of a simplefeatures have dramatically changed. Namely, the optimal
spatial arrangement on the transfer of periodic stimulation byevel of noise is higher, its effect is not so strong, and the
a model neuron. We have seen that by taking into accourrange of noises close to it is broader for the two-point model
the distinction between the input site and the output site, afthan for the single-point one. A question may be posed
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16 T - - T - the translation of the signal from the input site to the trigger
zone(not only the noise but also the amplitude of the oscil-
latory par}. The measurd would be flat. The neuron would
fire only as controlled by the background signal or it would
remain silent. However, we know that this is not true and
several reasons can be offered to explain why. First, the input
L " to the neuron is not located exclusively on the most distal
< two-point compartment, but all along the neuron. Second, the serial
P 1 organization of the compartments, implicitly assumed, is not
! | realistic and the branching structure of real neurons can be
¢ very complicated. By adding more compartments, even with
2 | ] three units only, a new problem about their different interac-
tions arises. Third, in addition to the external noise, the neu-
00 . 5 3 i : ron itself generates its intrinsic noise which can be respon-
o0 il ms U2 sible for signal distortion and/or enhancement. Fourth, the
temporal correlation of the inputs, not considered here, may
also play its important role in the signal enhanceniddi.
Thus, the phenomenon described in this pdpahancement
o0} B of the periodic signal by noisean be expected in the mul-
ticompartmental neurons as well. The only, but substantial,
sool | prloblem which remains to be solved is to quantify it prop-
erly.

There is a question of whether the difference in the re-
sponses of the single-point and two-point models can be
eliminated by a proper adjustment of their parameters. Here,
100 1 we adjust the parameters through the variances and inte-
grated difference between the autocorrelation functions. The
sof- 1 rate of the asymptotic decay of the autocorrelation function
can also be used. However, there is always a difference be-
, J_-,, , . tween the responses of the models reflected by the qualita-
1= 2% = = = tively different behavior of their autocorrelation functions at
zero. For the single-point modéthe Ornstein-Uhlenbeck
350 - - - - " procesy the autocorrelation function is not differentiable at
zero. On the other hand, for the two-point model, the auto-
- correlation function of the depolarization at the trigger zone
is always differentiable, see E(R.19. Thus, whatever pa-
rametrization of the models is considered, the single-point
model does not behave as a special case of the two-point
one.

The problem of the correct specification of the parameters
in LIF models of neurons was partly touched here in effort to
compare the single-point model with its two-point counter-
part. We have not performed a complete parametric study
like those presented in the inspiring papEssl1,14, where
are studied the effects of changing the amplitude of the time-

14 + (9)

L3
°
L4
8
o
&
o100 § one-point
h 3
4

[}
T

FS
’,,4++ + T+

150

counts

time (ms)

300

250
g 200+
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1001

50

ik w varying component of the signal, the background signal, and
0 300 400 500 500 the stimulation frequency. Additionally, we could ask about
time (ms) the role played by the intrinsic parameters in the enhance-

ment of the signal by noise in both, single- and two-point,
models. None of these problems were at the aim of this
study, but we only wished to show the effect of spatial ar-
rangement on the information transfer of the periodic signal.
whether this tendency would continue by higher and higheFor this purpose only one set of parameters was selected,
compartmentalization of the neuron, like the models menhopefully close to those which can be identified in real neu-
tioned in Introduction. The problem has not been investi-rons. It remains an open question if the ranges of parameters
gated here and the answer can be based on an analogy omslyitable for the enhancement will be changed by compart-
(some details on the multicompartmental LIF model with mentalization.

white as well as Poissonian noise, but in the absence of pe- The measure of the input-output synchronizatiog in-
riodic stimulation, are presented[ii0]). Nevertheless, if the troduced here is easy to interpiglistance to firing at con-
trend observed here by adding more compartments contirstant frequencyand easy to evaluate from individual ISls

ues, the noise would be finally completely filtered out duringthe same way as calculating the sample momeaAistually,

FIG. 3 (Continued.
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it can be evaluated for the majority of already published datdhe stimulation period with the highest rate of firing at this
giving only average and standard deviation coefficient of ~ frequency. From the methodological point of view, the nu-
variation of ISIs and it is its greatest advantage. As pre-merical evaluation of the first-passage-time density is more
dicted and confirmed by simulation, the measure is rathelifficult than simple simulation of ISIs.

sensitive, in dependency am, to the missed periods when ~ Plesser and TanakdO] examined the response of the
no spike is elicited and different values of can be also Single-point LIF m_odel to endogenous periodical stimulation.
interpreted in coding terminology. This sensitivity to missed They used for this purpose the most common measure of
firing periods seems to be important for the single neurorptochastic resonance—the signal-to-noise ré8olR) de-
coding, when the message at the next level of the neuronfi€d s the ratio of the peak, located at the signal frequency,
network strongly depends on the activity of a single unit. For®f the output power spectrum to its background level. The
population coding, in which a large number of neurons conS@me method was applied by Chapeau-Blondeiaal. [45]
verge to a single on&or example, in the olfactory sensory or the single-point LIF model analogous to E@.D) in
system[42], a missed firing is easily replaced by firing of Which the periodic component consisted of input pulses re-
other source neurorfd3]. This distinction can give a hint C€ived at constant intervalperiodic clicks corrupted by a
about the applicability of the measure, . The other ex- Poissonian noise. However, the exogenous periodicity vio-
treme to missed periods is the firing of several spikes, a burdgt€S the renewal character of the output. Further, the two-

of spikes, not very much separated, during one period opoint model has nonrenewal output even under the constant
stimulation. In such a case, if the burst is declared as a sing

gonditions being characterized by positive serial correlations
complex spike, the phenomenon may be considered as fava?! S!S This lack of renewal character partly handicaps this
able for retaining periodicity in the signal transmission. Method[39] and its extension for exogenous periodicity in
Then, the measures of the enhancement should take this inf® LIF model was proposed only receri{th?,48. Similarly,

account, but both these situatiofmsissed periods and bursts an assumption _that the output is in_ accordance with an inho-
should be first carefully studied in the single-point model notM0geneous Poisson process permits us to transform the cycle

by simulation but by more reliabl@nalytical and numerical ~ Nistogram to the frequency domain and to use the standard
methods. SNR measur¢l3]. A great advantage of the SNR quantifi-

There exist other measures of synchronization by noise dfation is the knowledge of the formula relating analytically
the output with periodic stimulation. The traditional one, in tiS ratio to the input signal strength, the noise intensity, and
theoretical as well as experimental studies on phase lockind® thresholde.g.,[47]). It remains as an open problem to
is based on the cycle histograms presenting the spike appe&f€'iVe & similar formula for measud;,. Especially form
ance with respect to the phase of the driving fofsee, e.g., 2 the task may be tractable due to relationstf?) be-
[28,43,44. Using this method, the interspike intervals aretweenA, and the first two moments of the ISI dlstrlbutl_on.
converted mod 2/w so they fall within the interval of one There are other measures to evaluate the effect of noise on

period of stimulation. This method stresses the synchroniza2!9nal transmission between neuronal input and output. The
tion over the exact phase locking. In other words, a spikdnformation-theory based measures were us€®jg9). Ac-
fired after a long period of silence has the same effect, if welfU@!ly, the information transfer in dependency on the vari-
synchronized with the signal, as the spike fired during thebility and cprrelatlon structure pf ISls, byt |rre§pectlvely of
first period after the reset. We have not applied this method® Mechanism of their generation, was investigated already
for the comparison of the single- and two-point models agn°re than 30 years aga8]. A measure based on Fisher
the expected optimum noise levels achieved by this methotfiformation was proposed by Stemmlgr4] and for it a
are low(waiting for a spike can be longnd simulation may ~'elationship analogous to that based on SMR] was de-
introduce substantial distortion of the results. Neverthelesd/ved- Another criteria can be based on correlation or coher-
due to the filtering effect of the compartmental structure of€Nce between the input and outyetg.,[49]) and undoubt-
the two-point model we may expect an analogous shift tgdly others can be found and proposed_. _Apparently, ther_e is
higher noise amplitude here as well as in any other method® Complete range of methods for quantification of the noise
In [3] and for the sake of comparison also[itl], the effect in signal transmission and the choice must depend on

measure of the role of noise was based on the comparison §1€ Purpose, conditions, and interpretability of the results.
values of the ISI probability density at the valueT (the We have shown that the general features of the LIF model

period of stimulatioh in dependency ors;. The critical &€ also preserved if its spatial version is considered. The

noise was declared to be that which reached the maxima §gSUlts suggest that the suitable levels of the noise may be
g(T) and this method was also applied previously for thesubstantlally h|gher in real neurons than those predlctgd by
simplified LIF (perfect integrate-and-firemodel [4]. This 1€ single-point models. And finally, the range of optimal
method, as well as that one proposed in this paper, has ifi0iS€ may be in reality quite broad, which would prove a

advantages and disadvantages and they are partly compaf@dﬂaﬂvew high reliability of the neuronal information trans-

in Sec. Ill. Again, as in comparison with the cycle-time his- "€"
togram, the distancé3.1), namely for largem, is very sen-

sitive to higher harmonic firingéwith periods Z' or more -
missing firing$, but the maxima ofj(T) takes into account Research was supported by Grant No. A701112/1997
the spread of the distribution only marginallyursting and  from Czech Academy of Sciences and by GIS “Sciences de
long ISI have the same effgctNevertheless, in both mea- la Cognition” Grant No. CNA 10. We thank C. E. Smith for
sures the understanding of the term “optimal” noise for ex-careful reading of the manuscript and for many stimulating
ogenous stimulation is the same, being based on matchingpmments.
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