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Effect of spatial extension on noise-enhanced phase locking in a leaky integrate-and-fire mode
of a neuron
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Signal transmission enhanced by noise has been recently investigated in detail on the single compartment,
also referred to as single point, leaky integrate-and-fire model neuron under a subthreshold stimulation. In this
paper we study how this phenomenon is influenced by taking into account the spatial characteristics of the
neuron. A stochastic two-point leaky integrate-and-fire model, comprising a dendritic compartment and trigger
zone, under periodic stimulation is studied. A method of how to measure synchronization between the signal
and the output in both, experiments and models, is proposed. This method is based on a distance between the
exact periodic spiking, as expected for sufficiently strong and noiseless stimulation, and neuronal activity
evoked by a subthreshold signal corrupted by noise. It is shown that qualitatively the same phenomenon,
phase-locking enhanced by the noise, as found in the spatially unstructured neuron is produced by the spatially
complex neuron. However, quantitatively there are significant differences. Namely, the two-point model neu-
ron is more robust against the noise and therefore its amplitude has to be higher to enhance the signal. Further,
it is found that the range of the critical levels of noise is larger for the two-point model than for the single-point
one. Finally, the enhancing effect at the optimal noise is more efficient in the single-point model and thus the
firing patterns at their optimal noise levels are different in both models.

PACS number~s!: 87.10.1e, 07.05.Mh
f a
ea
m

e
e
-fi

n
li

it
o

e
om

l o
ly

th
p
or
v

ro
he
m

n-

uc-
ed
ut
the

. Of
col-
nt.
cade
io-
e.
lar

ion
smis-
he
e of

rent
the
eu-

uc-
ant

ity
All
ere
used

s of
I. INTRODUCTION

The single-point models, in which all the properties o
neuron are collapsed into a single point in space, app
besides the cable models, to be the most common for
description of the neuronal activity@1#. The most frequently
applied, studied, modified, and generalized among th
models are, as a compromise between tractability and r
ism, those which are based on the leaky integrate-and
~LIF! concept; for a recent review see@2#. The above-
mentioned preference of the single-point representatio
also obvious in the studies on the stochastic resonance
phenomena in neuronal models~Refs.@3–14# and many oth-
ers!. A great advantage of the single-point abstraction is
relatively good mathematical tractability and transparency
the achieved results. Another type of approach to the n
ronal modeling is based on considering model neurons c
posed of many compartments~for example, Baldiet al. @15#
studied a cerebellar Purkyne cell model containing a tota
4550 compartments!. These models are investigated main
by using software packages specifically developed for
purpose @16–18#. The questions posed in these two a
proaches usually do not overlap. The former one is m
oriented on the studies of neuronal functioning in an en
ronment~networks, input-output properties! whereas the lat-
ter approach aims at revealing the properties of the neu
itself. The inspiring question for this paper is whether t
studies on the input-output characteristics could gain so
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new information from such, at least minimal, compartme
talization of a neuron.

A typical neuron has a rather complex anatomical str
ture. However, at the basic simplification, it can be divid
into two distinct parts. It is the dendritic part where the inp
to the neuron takes place and the trigger zone where
response to the input is generated as the output signal
course, in the single-point models these two parts are
lapsed into one, despite that their functioning is differe
Therefore, several attempts have appeared in the last de
that generalize the single-point models, making them b
logically more relevant but still mathematically tractabl
Kohn @19# proposed a two-compartment model and simi
models were further developed and studied@20–25#. It has
been shown in @22,23# that the activity of the two-
compartment model is less sensitive to abrupt stimulat
changes because these are smoothened out in the tran
sion from the dendritic compartment to the trigger zone. T
delayed response of the two-point model is a consequenc
the fact that the input takes place at a compartment diffe
from that at which the output is generated. Further,
model predicts serial correlation of intervals between n
ronal firings, interspike intervals~ISIs!, which is a phenom-
enon often observed in experimental data but not reprod
ible in stochastic single-point models under time-const
input. Finally, as shown in@22#, the two-point model neuron
is characterized by a lower sensitivity to the input intens
and a larger coding range than the single-point model.
these results were derived for time-constant signals and w
based on the assumption that the mean discharge rate is
as the neuronal code. The assumption~implicitly contained
in most of the studies on input-output characteristics! is quite
realistic because the rate code is one of the basic mode
8427 ©2000 The American Physical Society
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signaling in the nervous system, for example for the stim
lation intensity@26#; as the stimulus intensity is increased,
increase in the neuronal activity is expected to follow alm
immediately.

Periodic forces in real neurons come either from the
ternal world in sensory systems or are caused by periodic
fluctuating conditions within the neuronal network or,
nally, appear within the neuron itself. The sources of pe
odic stimulation in a model neuron, at least for the L
model, were studied in@27#. There, the periodic signal
which is influenced by the activity of the neuron under co
sideration to such an extent that it resets the phase of p
odic forcing at each neuronal discharge, is called the end
enous one. The periodic signal which evolves independe
of the activity of the studied neuron is called exogeno
There is no doubt about the existence of periodically cha
ing internal conditions in a neuron, but these are not so e
to manipulate experimentally and probably have a sma
effect than externally imposed periodic forces. Due to t
limited biological relevance of the endogenous periodic
and due to the fact that the paper is oriented towards stu
ing the transfer of the external signal by a neuron, here
restrict ourselves to the exogenous periodic input only
detailed comparison of the effect of noise in dependency
exogenous versus endogenous periodical input in the sin
point LIF model was presented recently by Shimokawaet al.
@12#.

The aim of this study is to investigate the effects of pe
odic stimulation on the simplest spatially structured neuro
model ~two point! in comparison with those evoked by th
same kind of stimulation applied on the classical nonspa
~single-point! LIF model. At first, the subthreshold propertie
of the models are summarized. These are necessary for b
able to define comparable input signals for both mod
Then, a method for measuring the effect of noise on
regularity of firing is proposed. This measure permits us
define an optimal level of the noise enhancing the sign
Further, on the basis of this measure, we conclude that
same effects are present in both models, however, wi
substantial quantitative differences:~i! the optimal noise is
larger in the two-point model,~ii ! the enhancing effect of the
optimal noise is weaker in the two-point model than in t
single-point one and thus the firing patterns at their optim
noises differ, and~iii ! the range of the noise close to th
optimum is larger in the two-point model than in the sing
point one.

II. THE MODELS

A. Single-point model

In the stochastic LIF model, under a periodic stimulatio
the behavior of the membrane depolarizationX is described
by the stochastic differential equation

dX5S 2
X

t
1m1A1 cos~vt ! Ddt1s1dW,

X~ t0!5x0 , t>t0 ~2.1!

whereW is a standard Wiener process,t.0 is the membrane
time constant (t5RC, whereR is the membrane resistanc
-
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and C is its capacitance!, m, A1, and s1.0 are constants
characterizing the input and its variability,t0 is the moment
of the last firing of an action potential, andv is the fre-
quency of the driving force modulation (T52p/v is the
modulation period!. The firing of an action potential is iden
tified with the first crossing ofX through a firing thresholdS,
S.x0. At these moments, the membrane potential is rep
edly reset to its initial valuex0, and for simplicity it is as-
sumed to be equal to zero,x050. Due to the exogenou
character of the signal, the periodic force continues and d
not depend ont0. The phase-locking effect, in which th
neuronal firing synchronizes with the periodical stimulatio
has been both theoretically@in Eq. ~2.1! using the determin-
istic signal characterized bys150# and experimentally~ac-
tivating a neuron by periodically changing intensity of stim
lus! investigated for quite a long time~e.g., @28–31# and
many others!. Again, mainly the models based on the L
concept were used for this purpose, but in the determini
versions.

For studying the model~2.1!, three parametric region
may be defined:~1! the permanent suprathreshold in whic
the constant part of stimulation is sufficient to reach t
threshold,~2! the permanent subthreshold in which, whatev
is the frequencyv, no sustained firing exists and only
transient activity may appear at the onset of stimulation, a
~3! mixed, in which the periodic component determines if t
threshold is or is not reachable. For the mean ofX in the
absence of threshold and under the conditiont050, holds

E„X~ t !…5tFm~12e2t/t!1
A1

11~vt!2

3S cos~vt !

t
1v sin~vt !2e2t/tD G . ~2.2!

The subtheshold stimulation occurs when max$E„X(t)…ut
.0%,S, which implies

tS m1
A1

A11~vt!2D ,S. ~2.3!

The stimulation is of permanent subthreshold type ift(m
1A1),S, of permanent suprathreshold type iftm.S, and
the mixed cases cover the remaining part of the$m,A1%
space. In these mixed cases, the value of stimulation
quency v decides whether the stimulation is actually s
prathreshold or subthreshold.

B. Two-point model

The stochastic processX, defined in Eq.~2.1!, represents
the membrane depolarization at an abstract point of a neu
which is generally identified with the trigger zone. Howeve
the input, which takes place mainly at the dendritic part
the neuron, is also represented here. This concentration o
properties into the single point is the source of uncertainty
the single-point models. Thus, the description byX is, in the
two-point model, replaced by a couple$X1 , X2% representing
depolarization in the two distinct parts. The model we an
lyze here is based on the following set of hypotheses.
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~i! The neuron is assumed to be made of t
interconnected—dendritic and trigger zone—compartmen

~ii ! The stochastic input is present at the dendritic co
partment only.

~iii ! The potentials of the two compartments are descri
by leaky integrators with a reset mechanism at the trig
zone.

In the two-point neuronal model, exposed to the sa
type of input as Eq.~2.1!, the depolarizationX1 of the den-
dritic compartment is defined in the following way:

dX1~ t !5S 2
X1~ t !

t
1

1

t r
@X2~ t !2X1~ t !#1n1A2cos~vt ! Ddt

1s2dW ~2.4!

and the depolarizationX2 at the trigger zone is

dX2~ t !5S 2
X2~ t !

t
1

1

t r
@X1~ t !2X2~ t !# Ddt, ~2.5!

wheret r is a junctional time constant; the other paramet
have the same interpretation as in Eq.~2.1!. It is assumed in
equations~2.4! and ~2.5! that the membrane time constan
are the same at both compartments,t5t15t2, but this as-
sumption can be easily removed. In accordance with
integrate-to-threshold scenario, in the moment when the
polarizationX2 at the trigger zone reaches the firing thres
old S, the value of the processX2 is reset to zero while the
processX1 continues in its evolution. If the occurrence tim
of this event is taken as the time origin, then the ISI is
first-passage time across the boundaryS for X2 under the
initial conditions X1(t0)5x10 and X2(t0)50, wherex10 is
the value of the dendritic potential at the moment of the l
spike. For the deterministic input (s250), the above de-
scribed model was studied in detail by Bressloff@20#.

First, to be able to define the subthreshold stimulat
regime in this model, we investigate the means,m1(t)
5E„X1(t)… andm2(t)5E„X2(t)…, in the absence of a thresh
old. A general formula for the moments of a stochastic p
cess given by linear stochastic differential equations can
applied to Eqs.~2.4! and ~2.5! ~e.g.,@32#!. We have

dm1~ t !

dt
52S 1

t
1

1

t r
Dm1~ t !1

1

t r
m2~ t !1n1A2cos~vt !

~2.6!

and

dm2~ t !

dt
52S 1

t
1

1

t r
Dm2~ t !1

1

t r
m1~ t !. ~2.7!

For defining subthreshold or suprathreshold parametric
gions, we are interested only in the behavior of the mome
for large t and thus we will use the initial condition
m1(0)5m2(0)50. The solutions of the above equations a
given by

m1~ t !5k11k2expS 2
1

t
t D1k3expF2S 2

t r
1

1

t D t G
1k4cos~vt !1k5sin~vt ! ~2.8!
.
-

d
r

e

s

e
e-
-

e

t

n

-
e

e-
ts

and

m2~ t !5 l 11 l 2expS 2
1

t
t D1 l 3expF2S 2

t r
1

1

t D t G
1 l 4cos~vt !1 l 5sin~vt !, ~2.9!

where

l 15
nt2

t r12t
andk15nt2 l 1 , ~2.10!

l 252
t@n1A21n~tv!2#

2@11~tv!2#
5k2 , ~2.11!

l 35
tt r@~t r12t!2~n1A2!2n~tt rv!2#

2@~t r12t!21~tt rv!2#~t r12t!
52k3 ,

~2.12!

l 45
A2

2 S t

11~tv!2
2

tt r

~t r12t!21~tt rv!2D ,

k45
A2t

11~tv!2
2 l 4 , ~2.13!

and

l 55
A2v

2 S t2

11~tv!2
2

~tt r !
2

~t r12t!21~tt rv!2D ,

k55
A2vt2

11~tv!2
2 l 5 . ~2.14!

When comparing the means of the two- and single-po
models, Eqs.~2.8! and ~2.9! with Eq. ~2.2!, we have
E„X(t)…5m1(t)1m2(t). The rest of the properties is a dire
consequence of this one. The same periodicity is retaine
both compartments and also the same decay of the ampli
with increasing frequency of stimulation. For larget we have

m1~ t !5k11Ak4
21k5

2 cos~vt2f1! ~2.15!

and

m2~ t !5 l 11Al 4
21 l 5

2 cos~vt2f2!, ~2.16!

where tgf15k5 /k4 and tgf25 l 5 / l 4. By taking different
initial conditions, onlyf1 andf2 change. Thus, the division
of the input parametric space analogous to that based on
~2.3!, which holds for the single-point model, follows from
max@m2(t)ut.0#,S, namely,

l 11Al 4
21 l 5

2,S, ~2.17!

which defines the permanent subthreshold stimulation.
The equations similar to those for the first moments c

be written for the second-order moments. Solving them,
variances of the membrane potential at both compartm
and the covariance between them can be computed, see@23#.
The relation between the variances is
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Var„X2~ t !…5Var„X1~ t !…2
tt rs2

2

2~t1t r !

2S Var„X1~0!…1
tt rs2

2

2~t1t r !
De22ttr t/(t1tr )

~2.18!

and as pointed out in the cited paper, the second-order
ments do not depend on the deterministic part of the sig
but only on the noise, and thus they are the same asm
5n5A15A250. As we are more interested in the behav
of the trigger zone compartment for its possible compari
with the single-point model than in the dendritic compa
ment, let us also present the asymptotic form of the auto
variance functionR2(s,t) of X2, for large t and s. Let t
→` and s→`, then the autocovariance function depen
only on the difference of these two times and foru5ut2su,
we have

R2~u!5
s2

2

8t r
S t2t re

2u/t

t1t r
2

t2t r
2e2(2t1tr )u/(ttr )

~2t1t r !~t1t r !
D .

~2.19!

C. Adjustment of the parameters

Two kinds of parameters appear or are connected to
~2.1!; the intrinsic parametersSandt, which are independen
of the input, and the parametersm, A1 , v, ands1, reflecting
the input@23,33#. We may regardm as a background~steady-
state! level of the signalA1 as its time-variable componen
controlled byv and s1 as the amplitude of the noise. A
additional parametert r appearing in Eqs.~2.4! and~2.5! can
be classified as the intrinsic parameter, the remaining par
eters have the same interpretation as in the single-p
model.

An example of system highly sensitive to periodic stim
are the olfactory neurons@34#. The critical region for these
fluctuations is between 1 and 10 Hz, up to 40 Hz in so
other systems. Therefore, the range for realisticv in the
models is well specified. Also the intrinsic parameters of
neurons are relatively well known, the firing thresholdS
ranges from 5 to 15 mV and the time constantt from 5 to 20
ms. Note that the time constant is sufficiently shorter than
period of stimulation and thus even within one stimulati
cycle the depolarization gets close to its steady-state leve~if
the firing threshold does not prevent it! and thus for suprath
reshold stimulation the phase locking in which there is o
one spike per several stimulation period is rarely observed
slightly different situation concernst r because the identifi
cation of this parameter may require us to take into acco
in addition to electrical properties, the distance between
compartments. To be specific,t r has been chosen of th
same order of magnitude ast. The attempts to specify th
values of the remaining input parameters are more com
cated. Even in the case of direct external stimulation,
input parameters do not reflect the physical levels of stim
but rather their transformation into the internal representa
~for a more detailed discussion see@23#!. There is no possi-
bility of directly measuring the values ofm, A1, ands1 and
an analogous statement holds for the corresponding pa
o-
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eters of the two-point model. All these parameters have to
estimated from the spiking activity and the task is of subst
tial complexity even for the Ornstein-Uhlenbeck mod
@35,36#. Therefore, their specifications in modeling studi
have usually a speculative character.

As mentioned above, and investigated in@22# for the con-
stant inputs, in order to compare the single- and two-po
models, their parameters have to be adjusted. To make
same steady-state levels of depolarization, for the cons
~background! inputs we have to fulfill the condition

n

m
5

2t1t r

t
, ~2.20!

from which, and for the given set of intrinsic parameterst
andt r , if the inputm to the single-point model is given, th
constant inputn to the two-point model can be calculate
Similarly, relating the amplitudes given by Eqs.~2.16! and
~2.2!,

A1t

A11~vt!2
5Al 4

21 l 5
2, ~2.21!

the value ofA2 can be evaluated~it is contained inl 4 andl 5).
We are not going to adjust the amplitudes of noise as

other input parameters because we will investigate them
their full ranges; however, a preliminary hint about their r
lationship can be deduced from the behavior of the auto
variance functions. For example, minimizing the differen
of areas under the autocovariance function for the sing
point model, R(u)5s1

2te2u/t/2, and that given by Eq
~2.19!, we obtain that the ratio between the amplitudes
noise s2 and s1 follows condition ~2.20!. Another adjust-
ment comes out from comparing the asymptotic varianc
R(0)5R2(0), which implies

s2

s1
5A2~t1t r !~2t1t r !

t2
. ~2.22!

So, we have several preliminary estimates, Eqs.~2.20!–
~2.22!, of the ratio between the amplitudes of the noise in
two-point model and the single-point one for achieving th
similar behavior.

III. THE RESULTS

A. A measure of the input-output synchronization

Before going into the comparison of the effect of th
noise in the two- and single-point models, we have to fin
suitable method for this purpose. The method should be
dependent of the model, preferably easy to establish in
periments and the obtained results should be easy to in
pret. First of all, we need to realize what result is expec
and on this basis to propose a measure of the devia
caused by the noise. For the suprathreshold stimulation,
ideal result is achieved if the noise is completely eliminat
Then, the neuron fires only as the signal determines. On
other hand, for the subthreshold conditions, there is no o
put in the absence of noise. Then, the ideal result is achie
if the parameters~in the single-point modelm and A1) can
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be modified in such a way that the signal is at least m
mally suprathreshold~increasing the signal! and again by
eliminating the noise. As we are interested in the role of
periodic component we keep, for comparison, its amplitu
A1 constant and change the background signalm to reach the
suprathreshold level. Then, we can return to our noisy sig
and measure the distance between the ideal output signa
that influenced or enhanced by the noise. The simplest s
ation arises for the 1:1 phase-locking regime which is c
sidered here; however, the measure we are going to pro
can be also generalized for other cases. So, in 1:1 ph
locking ~for suprathreshold stimulation in the absence
noise! ISI5T, which is the period of stimulation, and a po
sible measure of the noise-induced cooperative effect~noise-
induced distortion in supratheshold regime!, can be taken as

Dm5E
0

`

ux2Tumf ~x!dx, ~3.1!

wherem.0 is a parameter andf is the ISI probability den-
sity. The minimum ofDm equal to zero is achieved for regu
lar firing at periodT, f (x)5d(x2T). For m52, the relation
~3.1! defines the mean-squared distance, however, other
ues ofm can also be considered. It is obvious thatDm is less
sensitive, especially for largem, to double firings within one
stimulation period than to missing one or even worse sev
periods of stimulation in a row without any spike. If th
mean ISI isT and m52, thenD2 gives a variance of ISI,
otherwise

D25Var~ ISI!1@mean~ ISI!2T#2, ~3.2!

which has a very intuitive interpretation~the distance is
given by the variability of ISIs and the squared distance
tween mean ISI andT).

To calculate the values ofDm by using Eq.~3.1! requires
us to know the ISI density function, or at least for Eq.~3.2!
the first two moments of it. Shimokawaet al. @11# developed
a sophisticated method for the evaluation of the fir
passage-time density in the single-point model~2.1! under
the exogenous stimulation; however, no such method
been available for the two-point model equations~2.4! and
~2.5!, and thus, for the sake of equal conditions, we emp
a numerical simulation for both models. To estimateDm
from simulated~experimentally observed! ISIs we calculate

D̂m5
1

n (
i 51

n

uxi2Tum, ~3.3!

where ISIs are denoted byxi ( i 51, . . . ,n). The Euler
schema with time step 0.005 ms was applied in Eqs.~2.1!,
~2.4!, or ~2.5! to calculate the times needed to cross
threshold~half of this step was used to check the reliabil
of the procedure!. We are aware that simulation of the firs
passage-time density for stochastic diffusion processes
be unreliable, at least for some parameters~rare crossings
caused by low noise!; it overestimates the exact first-passa
time @37,38#. Therefore, the procedure was checked using
shorter step and very low noise cases were excluded.
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B. Without firing threshold

The behavior of the two-point model even without impo
ing a firing threshold reflects well some of its properties. T
mean dendritic and trigger zone depolarizations given
Eqs.~2.6! and ~2.7! and single trajectories of these depola
izations are illustrated in Fig. 1~a!. We can see that the nois
is substantially filtered out by the transition from the dendr
to the trigger zone. At the trigger zone, the trajectory follo
the mean more closely, while at the dendritic compartme
the noise dominates. The low variability of depolarization
the trigger zone, with respect to the dendritic compartme
follows from formula ~2.18!, which shows that, rather rap
idly, with a time constant (t1t r)/(2tt r), the steady-state
value of the variance ofX2(t) is reached and that it is
smaller than the variance ofX1(t). The decrease of the vari
ability level at the trigger zone implies that the relative d

FIG. 1. Behavior of the two-point model with parametersn
52.1 mV/ms,A250.5 mV/ms,T5100 ms,s251 mV/Ams, t r

516 ms,t510 ms in the absence of the firing threshold~subthresh-
old stimulation!. ~a! The mean depolarizations and single sam
trajectories for both compartments. The upper curves are for
dendritic compartment, the lower for the trigger zone.~b! The ratio
of the single trajectory of the membrane depolarization to its v
ance. The upper curve shows the ratio for the trigger zone reg
while the lower one corresponds to the dendrite.
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polarization is higher at the trigger zone than at the dend
and it is illustrated in Fig. 1~b!, where the ratio between
single trajectory of the depolarization and a variance of
depolarization is plotted. We can see that while the trig
zone depolarization is below the dendritic depolarization@see
Fig. 1~a!#, when related to the variance, it becomes high
This lower variability at the trigger zone@Fig. 1~a!#, reflected
also by higher relative depolarization@Fig. 1~b!#, suggests
robustness of the signal against the noise distortion an
enhancement present in the two-point model.

C. With firing threshold

1. Suprathreshold stimulation

The simulation of systems~2.4! and ~2.5! with an im-
posed firing threshold is illustrated in Fig. 2. In the noisele
situation (s250), the effect of the reset on the behavior
the dendritic compartment is negligible and visible only
the upper phase of stimulation period@Fig. 2~a!#. The phase
locking of the firing with the stimulation is apparent in bo
situations@Fig. 2~a! without noise and Figs. 2~b! and 2~c!
with noise#. In Fig. 2~b! and 2~c!, again the dendritic depo
larization seems to be strongly influenced by the noise
the periodic component is rather hidden in it. On the ot
hand, the spiking activity looks practically uninfluenced
the noise and preserves the pattern of Fig. 2~a! @see also the
corresponding histograms, Figs. 2~d! and 2~e!#. The ampli-
tude of the noise has to be relatively high to destroy the id
phase-locking effect. Nevertheless, the role of noise can
considered as negative here because it jitters the con
ISIs. In Fig. 2~f! the dependency ofD̂2 on the amplitudes of
the noise is illustrated. We can see that even here the m
sure has its meaning starting at zero for the noiseless co
tion and growing as the jitters of the ISIs increase with
noise. The stronger effect of noise in the single-point mo
is apparent.

2. Subthreshold stimulation

In Fig. 3 the dependency ofD̂m on the amplitude of noise
is presented for different values ofm ~higherm stresses the
importance of missed firings! for the single- and two-poin
models. We can see in Figs. 3~a!, 3~d!, and 3~g! that for both
models there exist optimal noise levelssopt determined by
the minimum value ofD̂m . This optimum is always sharpe
for the single-point model and it reaches a lower dista
from the constant ISI. This is very much apparent in the
histograms constructed for the critical noise in both mod
For the single-point model@Figs. 3~b!, 3~e!, and 3~h!# the
histograms are better centered around the period of stim
tion, however, any small change of the noise amplitudes1
would quickly destroy this synchronization. Defining the va
ues of s as an optimal range of the noise for which t
distanceD̂m is not ‘‘substantially’’ different from its minimal
value, we can see that the optimal range ofs2 is larger than
that of s1 independently ofm.

Equations~2.20! and~2.21! relate the input parameters o
the single- and two-point models in such a way that the m
depolarizations are the same in both of them. For the par
eters selected in Fig. 3~see the figure legend!, the ratio be-
te

e
r

r.

or

s

t

d
r

al
e

ant

a-
di-
e
l

e
I
s.

la-

n
-

tween n and m ~betweenA2 and A1) is 3.6 ~3.75!. As it
follows from comparing the autocovariance functions of bo
models, the value 3.6 would be also the expected ratio
tween the amplitudes of the critical noise. By using the ra
of asymptotic variances~2.22!, the predicted value is 4.33
On the other hand, it follows from the numerical experime
that the ratio betweens2

opt and s1
opt reaches 10 form52,

8.12 for m51, and 5.79 form51/2. The optimal levels of
the noise for the two-point model seem to be slightly larg
than those suggested by fitting the characteristics like a
covariance or the variances. The reason follows from a lo
depth of the profile of the functionDm in the two-point cases
It shows that the two-point model cannot reach the quality
the input reproduction whatever is the amplitude of t
noise. It means that the ISIs are more scattered aroundT in
the two-point model and in such a case multifiring is p
ferred over the missed periods.

The bursting~short ISIs! is caused by a higher level of th
noise and explains the higher ratios2

opt/s1
opt than that pre-

dicted by the autocovariance functions. The different eff
of the noise is well apparent from the ISI histograms@Figs.
3~b!, 3~e!, and 3~h!# and@Figs. 3~c!, 3~f!, and 3~i!# which also
illustrate the role of parameterm on measureDm . By using
largerm ~in our casem52!, the measure is very sensitive t
the long silent periods~long ISIs! and to avoid them in mini-

mizing D̂2, these are eliminated. This, on the other ha
almost completely destroys the phase-locking effect@Fig.
3~c!# and the bursts of more than one spike are typical in t
situation. There is another source of bursting, inherent in
two-point model, the positive serial correlation of ISI
which produces bursting even for constant input@23#. Of
course, what value ofm is the most appropriate one cann
be answered, but the visual inspection favors Fig. 3~i!, which
has the ratio of amplitudes of noises close to those predi
by formulas~2.20! and ~2.22!. As mentioned in Sec. III C 2
the values ofDm can be in reality lower than those estimat

by D̂m because of the overestimation of the first-pass
time; nevertheless, the shape of the curves would not
different.

Bulsara @39# and Shimokawa@11# measured the input
output enhancement by the height of the ISI densityg at T.
By using the histograms presented in Fig. 3, we can ju
the effect ofm on this measure. However, we have to
aware that the amplitudes of noise used in construction
these histograms are optimal with respect to measureD but
not with respect to the measure max$g(T)%. We have for
m52: g1p(100)5265 and g2p(100)587, for m51:
g1p(100)5345 andg2p(100)5229, for m51/2: g1p(100)
5273 andg2p(100)5318, where the index atg distinguishes
the one- or two-point model. We can see that for the sing
point model the maximum is reached atm51; however, the
peaks of the histograms are rather similar as were the le
of noise deduced for differentm. On the contrary, for the
two-point model, the maximum is reached atm51/2 and the
optimal noise determined by max$g(T)% may be substan-
tially different from that determined byD. It follows from
comparing the histograms that the firing patterns for the
timal noise are different in both models and also for t
two-point model in dependency onm.
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FIG. 2. Simulation of the two-point neuronal model under a suprathreshold stimulation. The variableX2(t) has been subjected to a res
to 0 at each time the thresholdS is reached (S56.80 mV, the rest of the parameters as in Fig. 1!. The values ofX1(t) are marginally
influenced by the reset.~a! In the absence of noise (s250 mV/Ams), the neuron fires at constant intervals equal to the period of stimula
T5100 ms.~b! and~c! In the presence of noise@s250.5 mV/Ams and 1 mV/Ams), the ISIs vary around the period of stimulation, whi
illustrates the robustness of the trigger zone response~spike generation! to the noise. When noise is acting~with diffusion coefficients2

51 mV/Ams, which may be considered as a rather high noise level!, the dendrite response to the action of periodic input shows a h
variability. On the contrary, at the trigger zone region, the structure of the spiking activity is not fundamentally changed.~d! and ~e!

Histograms of ISIs for different levels of noise in suprathreshold stimulation (s250.5 mV/Ams; s251 mV/Ams). ~f! Dependency ofD̂2

on the amplitude of noise in suprathreshold stimulation for the single-point and two-point models. The parameters for the single-po
arem50.583 mV/ms,A150.134 mV/ms as follows from Eqs.~2.16! and~2.17!. Note the faster growth of the distance for the single-po
model.



of ISIs
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FIG. 3. Dependency ofD̂m on the amplitude of noise in single- and two-point models for subthreshold stimulation and histograms
for the optimum levels of noise. The parameters of the two-point model aren52.0 mV/ms,A250.5 mV/ms,T5100 ms,t r516 ms,t
510 ms,S56.80 mV, and the corresponding parameters of the single-point model arem50.556 mV/ms,A150.134 mV/ms;~a! m52, for
which the optimal noise is~b! s150.2 mV/Ams, and~c! s252 mV/Ams. In~d! m51, for which the optimal noise is~e! s150.17 mV/Ams,
and ~f! s251.38 mV/Ams. In ~g! m51/2, for which the optimal noise is~h! s150.19 mV/Ams and~i! s251.10 mV/Ams.
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IV. DISCUSSION AND CONCLUSIONS

This study was intended to show the effect of a sim
spatial arrangement on the transfer of periodic stimulation
a model neuron. We have seen that by taking into acco
the distinction between the input site and the output site,
e
y
nt
ll

the properties are qualitatively retained but the quantita
features have dramatically changed. Namely, the opti
level of noise is higher, its effect is not so strong, and
range of noises close to it is broader for the two-point mo
than for the single-point one. A question may be pos
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whether this tendency would continue by higher and hig
compartmentalization of the neuron, like the models m
tioned in Introduction. The problem has not been inve
gated here and the answer can be based on an analogy
~some details on the multicompartmental LIF model w
white as well as Poissonian noise, but in the absence of
riodic stimulation, are presented in@40#!. Nevertheless, if the
trend observed here by adding more compartments con
ues, the noise would be finally completely filtered out duri

FIG. 3 ~Continued!.
r
-

i-
nly

e-

n-

the translation of the signal from the input site to the trigg
zone~not only the noise but also the amplitude of the osc
latory part!. The measureD would be flat. The neuron would
fire only as controlled by the background signal or it wou
remain silent. However, we know that this is not true a
several reasons can be offered to explain why. First, the in
to the neuron is not located exclusively on the most dis
compartment, but all along the neuron. Second, the se
organization of the compartments, implicitly assumed, is
realistic and the branching structure of real neurons can
very complicated. By adding more compartments, even w
three units only, a new problem about their different intera
tions arises. Third, in addition to the external noise, the n
ron itself generates its intrinsic noise which can be resp
sible for signal distortion and/or enhancement. Fourth,
temporal correlation of the inputs, not considered here, m
also play its important role in the signal enhancement@41#.
Thus, the phenomenon described in this paper~enhancement
of the periodic signal by noise! can be expected in the mu
ticompartmental neurons as well. The only, but substan
problem which remains to be solved is to quantify it pro
erly.

There is a question of whether the difference in the
sponses of the single-point and two-point models can
eliminated by a proper adjustment of their parameters. H
we adjust the parameters through the variances and
grated difference between the autocorrelation functions.
rate of the asymptotic decay of the autocorrelation funct
can also be used. However, there is always a difference
tween the responses of the models reflected by the qua
tively different behavior of their autocorrelation functions
zero. For the single-point model~the Ornstein-Uhlenbeck
process!, the autocorrelation function is not differentiable
zero. On the other hand, for the two-point model, the au
correlation function of the depolarization at the trigger zo
is always differentiable, see Eq.~2.19!. Thus, whatever pa-
rametrization of the models is considered, the single-po
model does not behave as a special case of the two-p
one.

The problem of the correct specification of the paramet
in LIF models of neurons was partly touched here in effort
compare the single-point model with its two-point counte
part. We have not performed a complete parametric st
like those presented in the inspiring papers@3,11,12#, where
are studied the effects of changing the amplitude of the tim
varying component of the signal, the background signal,
the stimulation frequency. Additionally, we could ask abo
the role played by the intrinsic parameters in the enhan
ment of the signal by noise in both, single- and two-poi
models. None of these problems were at the aim of t
study, but we only wished to show the effect of spatial
rangement on the information transfer of the periodic sign
For this purpose only one set of parameters was selec
hopefully close to those which can be identified in real ne
rons. It remains an open question if the ranges of parame
suitable for the enhancement will be changed by comp
mentalization.

The measure of the input-output synchronizationDm in-
troduced here is easy to interpret~distance to firing at con-
stant frequency! and easy to evaluate from individual ISIs~in
the same way as calculating the sample moments!. Actually,
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it can be evaluated for the majority of already published d
giving only average and standard deviation~or coefficient of
variation! of ISIs and it is its greatest advantage. As p
dicted and confirmed by simulation, the measure is rat
sensitive, in dependency onm, to the missed periods whe
no spike is elicited and different values ofm can be also
interpreted in coding terminology. This sensitivity to miss
firing periods seems to be important for the single neu
coding, when the message at the next level of the neur
network strongly depends on the activity of a single unit. F
population coding, in which a large number of neurons c
verge to a single one~for example, in the olfactory sensor
system@42#, a missed firing is easily replaced by firing o
other source neurons@13#. This distinction can give a hin
about the applicability of the measureDm . The other ex-
treme to missed periods is the firing of several spikes, a b
of spikes, not very much separated, during one period
stimulation. In such a case, if the burst is declared as a si
complex spike, the phenomenon may be considered as fa
able for retaining periodicity in the signal transmissio
Then, the measures of the enhancement should take this
account, but both these situations~missed periods and bursts!
should be first carefully studied in the single-point model n
by simulation but by more reliable~analytical and numerical!
methods.

There exist other measures of synchronization by nois
the output with periodic stimulation. The traditional one,
theoretical as well as experimental studies on phase lock
is based on the cycle histograms presenting the spike app
ance with respect to the phase of the driving force~see, e.g.,
@28,43,44#. Using this method, the interspike intervals a
converted mod 2p/v so they fall within the interval of one
period of stimulation. This method stresses the synchron
tion over the exact phase locking. In other words, a sp
fired after a long period of silence has the same effect, if w
synchronized with the signal, as the spike fired during
first period after the reset. We have not applied this met
for the comparison of the single- and two-point models
the expected optimum noise levels achieved by this met
are low~waiting for a spike can be long! and simulation may
introduce substantial distortion of the results. Neverthele
due to the filtering effect of the compartmental structure
the two-point model we may expect an analogous shift
higher noise amplitude here as well as in any other meth

In @3# and for the sake of comparison also in@11#, the
measure of the role of noise was based on the compariso
values of the ISI probability densityg at the valueT ~the
period of stimulation! in dependency ons1. The critical
noise was declared to be that which reached the maxim
g(T) and this method was also applied previously for t
simplified LIF ~perfect integrate-and-fire! model @4#. This
method, as well as that one proposed in this paper, ha
advantages and disadvantages and they are partly comp
in Sec. III. Again, as in comparison with the cycle-time h
togram, the distance~3.1!, namely for largem, is very sen-
sitive to higher harmonic firings~with periods 2T or more -
missing firings!, but the maxima ofg(T) takes into accoun
the spread of the distribution only marginally~bursting and
long ISI have the same effect!. Nevertheless, in both mea
sures the understanding of the term ‘‘optimal’’ noise for e
ogenous stimulation is the same, being based on matc
a
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the stimulation period with the highest rate of firing at th
frequency. From the methodological point of view, the n
merical evaluation of the first-passage-time density is m
difficult than simple simulation of ISIs.

Plesser and Tanaka@10# examined the response of th
single-point LIF model to endogenous periodical stimulatio
They used for this purpose the most common measure
stochastic resonance—the signal-to-noise ratio~SNR! de-
fined as the ratio of the peak, located at the signal freque
of the output power spectrum to its background level. T
same method was applied by Chapeau-Blondeauet al. @45#
for the single-point LIF model analogous to Eq.~2.1! in
which the periodic component consisted of input pulses
ceived at constant intervals~periodic clicks! corrupted by a
Poissonian noise. However, the exogenous periodicity v
lates the renewal character of the output. Further, the t
point model has nonrenewal output even under the cons
conditions being characterized by positive serial correlati
of ISIs. This lack of renewal character partly handicaps t
method@39# and its extension for exogenous periodicity
the LIF model was proposed only recently@12,46#. Similarly,
an assumption that the output is in accordance with an in
mogeneous Poisson process permits us to transform the c
histogram to the frequency domain and to use the stand
SNR measure@13#. A great advantage of the SNR quantifi
cation is the knowledge of the formula relating analytica
this ratio to the input signal strength, the noise intensity, a
the threshold~e.g., @47#!. It remains as an open problem t
derive a similar formula for measureDm . Especially form
52, the task may be tractable due to relationship~3.2! be-
tweenD2 and the first two moments of the ISI distribution
There are other measures to evaluate the effect of nois
signal transmission between neuronal input and output.
information-theory based measures were used in@6,39#. Ac-
tually, the information transfer in dependency on the va
ability and correlation structure of ISIs, but irrespectively
the mechanism of their generation, was investigated alre
more than 30 years ago@48#. A measure based on Fishe
information was proposed by Stemmler@14# and for it a
relationship analogous to that based on SNR@47# was de-
rived. Another criteria can be based on correlation or coh
ence between the input and output~e.g.,@49#! and undoubt-
edly others can be found and proposed. Apparently, ther
a complete range of methods for quantification of the no
effect in signal transmission and the choice must depend
the purpose, conditions, and interpretability of the results

We have shown that the general features of the LIF mo
are also preserved if its spatial version is considered.
results suggest that the suitable levels of the noise may
substantially higher in real neurons than those predicted
the single-point models. And finally, the range of optim
noise may be in reality quite broad, which would prove
relatively high reliability of the neuronal information trans
fer.
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